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Foreword

This paper is an extension of the work covering operational
aspects of the TMB Open-Ocean V/STOL Seaplane Following a program
review presented at the Office of Naval Research, several items
involving system costs and operational doctrine were deemed worthy
of further study. The extension suggested encompassed the following:

1.

2.
3.
&
5.

Hold continuously in contact maintenance one nuclear
submarine.

Consider an alteration of bearing accuracy.

Use single crew on 15-hour mission.

Eliminate the need for a tanker aircraft.

Consider use of one set of buoys for several aircraft,
each with replacement batteries.

Consider degradation of acoustical range as a function
of sea state.

Decrease radius of action as necesgsary.

Consider 48-hour turn-around time.

Compare the proposed gystem with an existing fixed-wing
systenm,

The extended efforts treated from 1 through 7, with the last items
left for application by the appropriate experts.
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SUMMARY

The report is an operational analysis of an ASW open-ocean V/STOL
seaplane design concept. It encompasses app.oximately 10,000 hours of
computerized passive sonocbuoy tracking simulation for a randomly moving
0- to 5-knot submarine. An actempt has been made to evaluate the opera-
tional effectiveness of a tracking technique utilizing four Air Transport-
able Sonar Surveillance System (ATSSS) buoys with bearing errors (accuracy)
allowed to vary from +1° to +10°.

The results of the simulation indicate that a maximum bearing error
of 5° is acceptable. However, the inclusion of directional Low-Frequency
Acoustical Ranging (directional LOFAR) buoys as a complementary system
would provide greater reliability and wider applications, and would permit
higher bearing errors. The wide range of on-station times possible under
different combinations of submarine tactics, sea state, and distance from
base is indicative of the seaplane's capability for a variable-length
mission, By utilizing inflatable vertical floats, the craft movement is

attenucted sufficiently to permit long crew endurance times.

INTRODUCTION

The Office of Naval Research (ONR) outlined (Reference 1) eight ASW
tactical tasks applicable to an Air-Sea craft. These included Task Force
Screening, Convoy Protection, Fixed Barrier Maintenance, Moving Barviers,
Contact Area Investigation, and Trackiang and Surveillance. Although the
seaplane exhibits a potential in all of these areas, the primary mission
under congideration is submarine tracking and surveillance (contact mainte-
nance) for extended periods of time without attacking and, if possible,
without revealing the presence of the Air-Sea craft. A typical seaplane
mission is to maintain continuous passive contact with a post-1970 nuclear
submarine moving on a low-speed random course in a high sea state several
hundred miles from the seaplane base.

The seaplane is assumed to arrive on gtation with one replacement
buoy and a fuel supply which varied with the distance from base. The
simulation is based on the assumption that the target was already tri-

angulated by three buoys, zad that the seaplane had just landed to begin
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monitoring. This mission depends upon buoy sharing between subsequent
aircraft, but eliminates fueling support. The operational study of the
tracking results considered a conventional maximum mission length (simi-
lar to that of the P-3A) of 15 hours, based on current single crew
endurance. However, it should be noted that this fixed mission length
places a severe limit on the seaplane's capabilities and does not con-
sider the probable crew rest time that could be obtained with vertical
floats. Reference 2 has indicated that increased system effectiveness
derives from extending the 15-hour limit.

The approach followed in designing the V/STOL seaplane was to (a)
define the basic contact maintenance mission, (b) design the vehicle
for this mission, and then (c) expand the seaplane capabilities into
other related ASW areas. The seaplane design study with mission profiles
and estimated performance is given in Reference 2. The present report
enlarges upon the initial study presented in Reference 2, in the section
on Contact Maintenance.

As demonstrated in Reference 2, the accuracy with which the V/STOL
seaplane can track a submarine is a function of the bearing error (accu-
racy) of each buoy and its distance from the target. The allowable
distances of the buoys from the target are determined by the probability
limits, which, In turn, depend on the detection characteristics. If any
buoy detection probability is below a minimum limit, a seaplane maneuver
is required to change the buoy triangulation pattern.

The bearing error of an ATSSS buoy is principally a function of the
electronics, number of hydrophone arrays, and the refarencing system on
the deep unit, and therefore it is an important factor in determining
buoy cost. As a result of further discussion of the contact maintenance
problem within the Office of Air Programs, Naval Applications Group, ONR,
this study was initiated to analyze the tradeoff in acceptable bearing
error versus target acquisition range (lc-alization error) in order to

further define the system effectiveness of & pessive buoy design.
APPROACH TO THE PROBLEM

GENERAL CONSIDERATIONS
Because of the system complexity associated with an investigation

of this type, it was impossible to include all the variables associated
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with a practical application. A sonar system is immensely complex
because of the many eccentricities and interreactions, which are quite
nebulous in some areas. Therefore, it w&s necessary to make certain
idealized and simplifying assumptions,

Any study of this type must include a definition of all the important
variagbles. Experimental values were used wherever possible in the math-
ematical model; and where not known, an idealized or an assumed value was
used to approximate the expected real effect. A simplified model was
built, neglecting relatively minor parameters and combining others into
8 single variable. By constantly re-evaluating the buoy and aircraft
parameters and anticipating irregularities; it was possible to gradually
include in the mathematical model one by one most of the pertinent vari-
ables. An example of this assertion is the refinement introduced in the
probability of detection through a series of trials. Initially, a sea-
plane maneuver was made 1f the probability of detection of any buoy fell
below 40 percent. A more sophisticated approach was later incorporated,
using the concept of cumulative probability limits aud an optimized buoy
drop location., The result was a significant improvement in tracking
capability and a decrease in seaplane fuel consumption.

This approach to the problem gradually converges to a level deter-
mined by the degree of sophistication of its principal components. There=-
fore, it is not meaningful to refine buoy limits to 5 percent probability
if the estimated detection range curve is accurate to only 25 percent.
Similarly, this analysis to determine an acceptable bearing error is only
as relevant as the buoy detection curve utilized (Figure 1). Additional
comparative and relevant information on predicted performance of an ATSSS

buoy may be found in References 3, 4, 5, and 6.

TRACKING STRATEGY

The V/STOL seaplane utilized four ATSSS buoys and always endeavored
to keep three buoys in operation tracking the target. The buoy detection
range was degraded for submarine speeds from five to zero knots., The

detection curve (Figure l) represents the average effects due to sea noise,

CONFIDENTIAL
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. buoy ‘characteristics, depth velocity profiles, and target radiated

noise for a transducer at 15,000 feet. The acquisition target was a
moderately quiet nuclear submarine estimated to be representative of
those of the post-1970 period.,

The probability of detecting a maneuvering submarine was optimized
for a 3° bearing error (accuracy) to obtain the lowest seaplane fuel
consumption, The limits for other bearing errors were then extrapolated
from these results in order to estimate maximum performance. Disposable
buoys were not used in the model simulation, although the preliminary
design weight estimation allowed for the stowage of thirty directional
LOFAR buoys (Reference 2). As the submarine performed its random maneuver,
the course and position were estimated by computing the intersections of
bearing lines from each of the buoys. After each "fix," the estimated
probability of detection was computed using the current speed and rauge
information, If these pfrobabilities were below minimum acceptable values,
the seaplane maneuvered and dropped another buoy at a location of higher
estimated probability, biased according to the current submarine course
estimate. The seaplane then flew to the buoy of lowest detection proba-
bility and retrieved it for the next placement, as required by the sub-

marine maneuvers.

FACTORS AFFECTING TRACKING PERFORMANCE

Tracking of a submarine is dependent upon the detection probability
limits of the buoys and maintenance of a minimum bearing error.

LIMITS FOR DETECTION PROBABILITY -- The following limits were assumed

as the minim:m acceptable values of probability of detection for a given
bucy pattern:

1. A minimum detection probability of 20 percent for an individual
buoy,

2. A minimum of 50 percent tor the sum of the detection probabilities
of any two buoys,

3. A total of at least 120 percent for the sum of the detection prob-
abilities for all three buoys.

In general, setting the minimum probability limits higher provided
more accurate submarine poaition and course estimates, bur {t also requived

more scaplane maneuvering (and hence greater fuel consumptlon).

- CONFIDENTIAL
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BEARING ERROR -- Since the computed position of the target is at the
intersection of .the bearing lines, a large bearing error could have a
significant effect on tracking performance. When the bearing lines
intersect at angles between 60° and 120°, however, the effect of bearing
error was not critical. But, as the target moves along its course and the
intersections approach 0° o1 180°, even small bearing errors may give rise
to prediction of target positions far beyond the actual target position
(see Figure 2). This effect is due to the randomness of the indicated
bearings within their "“error fans." As a result, the maneuver indicated
for the gseaplane may cause a loss of the target.

In the case of bearing errors, the tradeoff is again the tracking
accuracy versus fuel consumption — a smaller bearing ervor would result

in fewer m.neuvers.

OPTIMIZATION OF DETECTION PROBABILITY LIMITS -- In order to isolate
the eifects of bearing error on tracking performance, the buoy detection
probability limits were held constant for the entire simulation. However,
these limits were first optimized by studying the relative seaplane en-
durance obtainable against eight different submarine tactics. Four combi-
nations of limits at a bearirg error of #3° were each tested for 1060
hours of simulation with a 0- to 5-knot randouly maneuvering submarine.
Although no single comoination excelled in all cases, one reaulted in
better submarine tracking with fewer seaplane maneuvers. Of the three
cases which could maintain contact, the maximum variation in fuel con-
sumption was 75 pounds per hour, The optimum combination of limits was
then used for the remainder of the investigation with the assumption that
these limita could be slightly tmproved for other bearing errors. It may
be noted {n Figure 3 that there is a noticeable change of slope for errovs
greater than #3°, because of the optimization of the probability limits,
In general, to obtain the same tracking performance as obtained at 3°, the
limits could be increased at the lower bearing errors and thus fewver
asneuvers would be required. At the higher bearing errvors the limits
should be slightly reduced, because of & higher incidence of intersection

CONFIDENTIAL
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srrors and target loss., The dashed curves are an intuitive estimate of
the theoretical improvements obtainable 1f each individual bearing erver

is optimized.

RESULTS AND DISCUSSION
As described in Reference 2, the computer program for the IBM 7090
generated a series of maneuvers by randomly selecting values from digtri-
bution curves of speed, course change, and duration on course, For the
bearing error imvestigation, five representative O0- to 5-knot submarine
tactics were used, each one totaling 113.5 hours (Table 1). The important
parameters considered in analyzing the tracking performance of these tac-

tics were:

1. The average localization error.
2. The average course estimation error.

3. The average seaplane fuel consumption.

DISCUSSION OF THE PARAMETERS

Average localization error may be thought of as the average target
acquisition range which the buoy system was able to maintain. Although
it fluctuated greatly from time to time, the important consideration in
contact maintenance s the absolute tracking ability; that is, the capability
of the seaplane to keep in nearly continuous contact with the submarine.
It can be seen in Figure 4 that the localization error is a general index
of this capability and that quite often the vehicle was within the necessary
vange for a Mark 46 torpedo attack. For attack with a larger position error,
either ATSSS or LOFAR bucys could be dropped in more advantage:us positions,
thus affording higher confidence in convergence and kill.

The average course ervor is interrelated with the average localization
error. By use of a "least squares™ technique, the computer estimated
target course and then ugsed this infovmation in pogitioning the next buoy
in a favorable detection probability location. Incorreet course estiates
resulted in less desirable buoy placements with an inherent degradation of
poaition estimates,

The fuel consumption of the seaplame placed an upper limit on the ~a-
station tracking time, varying as a fuaction of submarine tactics ard thereby
suggesting the possibility of the variable-length aission described later.

- CONFIDENTIAL
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As the bearing, detection probability, and course data routines for
the coumputer all used random numbers, the data were never exactly re-
peatable., Occasionally, a data point fell far from the average, because
of the slight probeiiity that the target could be lost even wi'h small
bearing 2¢rore. These chance uccurrences are also indicative of the degree
of confldeace which may be slacea in the computerized model. 1In the
fatiring «f curves, **= va 1!’ ., >f such random points has been considered
and weiyghted accordingly. For ewzsmple, for tactic E a total loss occurred
with bearing errors of 2°, 7°, and 9° and a temporary loss occurred at *°;
whereas, at 5°, the target wae tracked without difficulty. A reliable
decision on the limiting bearing accuracy could be made only after care-
fully studying the detailed tracking data printout from the computer.

The mcst severe tracking case occurred when the submarine (target)
speed and course fluctuated so frequently that the seaplane had to maneuver
constantl- Any further increase of speed distribution (0 to 10 knots)
would have made ATSSS tracking with a single aircraft unfeasible. However,
the submarine noise generation in this speed range makes an integrated

ATSSS — directional LOFAR system look promising.

RESULTS OF THE COMPUTATIONS FOR FIVE SUBMARINE TACTICS
The following parazraphs refer to Figures 3, 4, and 5 and Table 1:

Tactic A -- All the bearing errora tracked without difficuley.
Although occasional false intersection maneuvers occurred at 7°, the long
zero-knot periods allowed ample time 20 relocate the buoys. The auximua
average locrlization error approached 1000 yards at 9°,

Tactic B -- No localization error was calculated for this tactic, but
no sertous difffcuity vas eéncountered until the bearing error became 9°
or 10° , vhen total loas of target occurred.

Tactic C -- The higher bearting ervors gave dffftculty. The seaplane
temporarily lost coatacs with the subzarine at beaving errors of &%, 5°,
and 7° because of poor angular intersections. However, the seaplane vas
able to reestablish contac: afrer tnitiating & search »sutine. The
sverage localization evror exceeded 1400 yards at 9° and the sudasrine

CONFIDENTIAL
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céurse error leveled out a: 30°, Although seaplane fuel consumption
approached 900 pounds per hour at 10°, contact was maintained.

Tactic D ~- The higher bearing errors again experienced difficulty,
due to unfavorable angular intersections of the bearing lines, The
target became lost for several seapiane mancuvers at 4° and 9°. The
maximum average localization error approached 1600 yards at 9°, Tracking
becomes very unreliable above 7°,

Tactic i -- This was the limiting case. Target speed fluctuated so
frequently that constent maneuvering was vequired to maintain contact.
When a false maneuver occurred, the localization error diverged to such an
extent that the search routine was unable to reestablish contact. Three
combinations of buoy dezection probability limits were attempted at <°,
7°, and 9°, but in none of the cases was contact maintaineé¢. Locali..:itfon
error for 5° was over 1150 yards, although no serious tracking dif::icuity
was eacountered. A temporary loss occurred at 3° because of erroneous fix

information,

EFFECT OF BEARING ERROR ON OPERATIONAL CAPABILITY

Figure 6 shows the tradeoff permitted in acceptable bearing error
versus scaplane cn-station mgneuver time. The fifteen-hour line represents
the maximum allowable time versus range for a conventional migsion, which
would include 35 minutes ready time to take off, a 277-knot cruise out, and
a 283)-knot return. The bearing curves vepregent the wmaxiamum tracking time
that a given bearing error may allow, assuming a fuel reserve of 1000 pounds.
Omly those bearing errvors which were acceptable for the two most difficult
tactics are shown.

All orher cases exceeded the 15-hour mission, and against a slow-ipeed
submarine, the seaplane was able £o vemain on-station over 21 hours at a
range of 1000 miles. It may be noted also thar, without the fuecl regerve,

all bearing errors would cross beyoad the [000-mile raage.

INTEGRATED ATSSS — LOFAR SYSTEM
A.theapgh it was not considered {in the ¢omputer stmulation, the uge of
a4 dispogable dircetional LOFAR buoy could result {m sigaificant iaprove-

2enty iR the seaplane's performance. The liuht weight and alv drop capabilicy

CONFIDENTIAL
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of LOFAR buoys would make them ideal additions to an ATSSS system. Such

buoys could be Jropped in all cases of uncertainity of target position.
For exawple, the seaplane could make disposable drops on the way to re-
pogsition an ATSSS buoy whenever the possibility of intersection errors
appeared, thus providing an additional cross bearing. 1In the case where
the search routine was necessitated, the seaplane could easily drop dis-
posable buoys in the suspected area and thus obtain information on the
optimum drop location for the longer range ATSSS.

The problem of tracking a random moving 1- to 15~knot target could
also be solved by using ATSSS drops complemented by disposables. Each
time an ATSSS buoy was situated at a long range for detection of high-
speed targets several disposables could be dropped closer to the estimated
submarine pogition. This system would then contain the submarine in two
concentric deployment patterns, thus enabling contact to be maintained even
if target speed fluctuated severely. If the submarine moved at prolonged
higi. speed (10 to 15 knots), the seaplane could simply remain airborne and
drop disposable buoys in a manner similar to that of the P-3A airplane.

The effect of LUFAR drops on bearing error has not been studied, but
it is probable that both tracking reliability and bearing error could be

significantly improved with their introduction.

VARTABLE-LENGTH MISSION
The flexibility of a variable-length mission appears to be a favorable
feature of the V/STOL seaplane's endurance capabilities., For a continuously
moving target, the 15-hour mission represents a reasonable crew endurance
limit. However, for a submarine which operates predominately in the 0 to
2-knot range for three or more hours at a time, a longer mission should
not impose serious crew problems. The inflatable vertical floats should
attenuate wave motion sufficilently to allow the crew several hours of rest,
A minimum complement consisting of a pilot-communications officer, a
tactical officer, and one additional ANEW crewman could maintain the air-
craft and ASW systems. The over-all mission length would then become a
function of sea state and submarine tactics with some reasonable upper

limit of on=-station time,
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CONCLUS LON

For the passive ATSSS buoy system described, the most difficult
tracking case encountered was the continuously moving submarine (0 to
5 knots). A bearing accuracy of x5° to +6° appears to be sufficient in
the majority of these cases, although some random losses will still
occur., The endurance capabilities of the V/STOL seaplane were excellent
in all but the most extreme combinations of long range and a continuously
moving target with wide speed fluctuations.

Two significant improvements in the seaplane's ASW performance are

considered feasible by:

1. Introducing an integrated ATSS8S — LOFAR system which could
provide higher confidence in contact maintenance for the 0 to 5-knot
target and could also increase the seaplane's capabilities into the 0 to
15-knot range.

2. Using a variable-length mission to provide greater utilization
of surveillance and tracking capabilities over a wide range of possible

sea states a~d submarine tactics.

Aerodynamics Laboratory
David Taylor Model Basin
Washington, .C.
September 1965

~-10-
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Tactic

A

Table 1

Summary of Submarine Tactics

{0 to 5 Knots ]

Speed Distribution

Predominately high (~ 5-knot)
and low speeds; stops average
58.2 percent of total time

Even distribution, 0 to 4
knots; stops average 6.8
percent of total time

Biased slightly toward
high speeds; stops average
9.3 percent of total time

Even distribution 0 to 4
knots only; stops average
3.9 percent of total time

Even distribution but with
no svops

-12-

Course Variation
Large fluctuations
averaging 73°

Large fluctuations
averaging 74°

Large fluctuations
averaging 70°

Large fluctuations
averaging 71°

Large fluctuations
averaging 70°

Average
Duration
On Course

6 hours

3.7 hours

4.5 hours

3.6 hours

4,0 hours
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Figure 1 - Estimated Detection Curves With Speed
Degradation for ATSSS Buoys
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